If data is the new oil, it’s a lot more like shale than fresh crude.
Here’s why: when someone compares data to oil — a conference-keynote favorite — it brings to mind the image of crude gushing out of a derrick. The reality of data science looks a lot more like the production of shale oil, which sits between layers of shale rock and impermeable mudstone and is obtainable only by fracking — fracturing the rock with pressurized liquid.
For all the transformative potential of industrial AI, most big data projects fail — just like ventures in the early days of fracking.
Estimates from Gartner place the failure rate of AI projects at 60 percent, with some sources like Pactera and Dimensional Research putting failure as high as 80-85 percent. Those estimates amount to $22- $30 billion pumped into failed AI projects in 2019.
That leaning into AI for digital transformation is not an easy or inexpensive project shouldn’t come as a surprise. What is striking is that the challenge isn’t often getting the analytics right — it’s the availability, quality, and management of data itself. Like shale production, data science is challenged by extracting, refining, and controlling the input that makes it productive.
There are three main problems data science and shale production share.